Exercícios sobre Números Racionais

5 weeks ago 0 3K Report
  • Toda Matéria
  • Exercícios
  • Exercícios de Matemática
  • Exercícios sobre Números Racionais

    window.sg_perf && performance.mark('img:visible'); Escrito por Rafael Asth Professor de Matemática e Física Publicado em 21 setembro 2021

    Estude com a lista de exercícios resolvidos passo a passo sobre números racionais que o Toda Matéria preparou para você.

    Questão 1

    Na sequência, da esquerda para a direita, classifique os seguintes números como racionais ou não racionais.

    a) Racional, racional, não racional, não racional, não racional. b) Racional, racional, não racional, racional, racional. c) Racional, racional, não racional, não racional, racional. d) Racional, racional, racional, não racional, racional. e) Não racional, racional, não racional, racional, não racional.

    Ver Resposta

    Resposta correta: c) Racional, racional, não racional, não racional, racional.

    -5 é racional pois, sendo um número inteiro, também está contido no conjunto dos números racionais.

    3/4 é racional pois, é um número definido como um quociente entre dois inteiros, com o denominador diferente de zero.

    é irracional pois, não há um número quadrado perfeito, ou seja, um número que multiplicado por ele mesmo resulte em três. Como não há um resultado exato, suas casas decimais são infinitas e não periódicas.

    é irracional pois, possui infinitas casas decimais não periódicas.

    é racional pois, representa a dízima decimal de período igual a 4. Assim: 1,44444444 ..... Embora possua infinitas casas decimais, pode ser escrito como a fração 13/9.

    Questão 2

    Represente as frações na forma decimal.

    a) 12/5 b) 47/8 c) 9/4

    Ver Resposta

    a)

    b)

    c)

    Questão 3

    Represente os números decimais na forma de frações.

    a) 3,41 b) 154,461 c) 0,2

    Ver Resposta

    a)

    b)

    c)

    Observação: caso seja possível, a resposta pode ser simplificada com uma fração equivalente. Ex: 2/10 = 1/5.

    Questão 4

    Considerando os seguintes números racionais em uma reta numérica, escreva entre quais números inteiros eles estão localizados.

    a) 6/4 b) -15/2 c) 21/4

    Ver Resposta

    a) , desta forma, 1,5 está entre 1 e 2.

    1< 1,5 <2

    b) , desta forma, -7,5 está entre -8 e -7.

    -8 < -7,5 < -7

    c) , desta forma, 5,25 está entre 5 e 6.

    Questão 5

    Leia as afirmativas e assinale a opção que as classifica corretamente em verdadeiras(V) ou falsas(F).

    1 - Todo número natural, também é um número racional. 2 - Números racionais não podem ser escritos na forma de fração. 3 - Existem números que são inteiros mas, não são naturais, ainda que sejam racionais. 4 - Um número racional pode ter infinitas casas decimais.

    a) 1-F, 2-F, 3-V, 4-V. b) 1-V, 2-F, 3-V, 4-F. c) 1-V, 2-F, 3-V, 4-V. d) 1-V, 2-V, 3-V, 4-V. e) 1-V, 2-F, 3-F, 4-V.

    Ver Resposta

    Resposta correta: c) 1-V, 2-F, 3-V, 4-V.

    1 - Verdadeira. O conjunto dos números naturais está contido no conjunto dos números inteiros que, por sua vez, está contido no conjunto dos números racionais. Ainda, todo número natural pode ser escrito como uma fração entre dois números naturais, com denominador diferente de zero.

    2 - Falso. Todo número racional pode ser escrito na forma de uma fração.

    3 - Verdadeiro. Os números negativos são inteiros e não são naturais, ainda que, podem ser expressos como uma fração.

    4 - Verdadeiro. Um número racional pode ter infinitas casas decimais, desde que, seja uma dízima periódica.

    Questão 6

    Compare os seguintes números racionais e os classifique como maior ou menor.

    Ver Resposta

    Existem duas formas de comparar frações, igualando os denominadores ou, escrevendo na forma de um número decimal.

    Igualando os denominadores

    O MMC (Mínimo Múltiplo Comum) entre 3 e 2, é 6. Este será o novo denominador das frações. Para determinar os numeradores, dividimos 6 pelos denominadores das frações originais e multiplicamos pelos numeradores.

    MMC(3,2)=6

    Da fração temos: , assim, 2 multiplicado por 5 é 10. A fração fica desta forma: .

    Da fração temos: , assim, 3 multiplicado por 8 é 24. A fração fica desta forma:

    Como as duas frações estão com os mesmos denominadores, comparamos os numeradores.

    Como é uma fração equivalente que se originou de , podemos concluir que é menor que .

    Escrevendo as frações na forma de números decimais

    Como , concluímos que .

    Questão 7

    Represente as frações na forma de números decimais explicitando, caso haja, suas dízimas periódicas.

    a) 1/3 b) 5/33 c) 7/9

    Ver Resposta

    a)

    b)

    c)

    Questão 8

    Efetue as somas e subtrações dos números racionais.

    a) 4/6 + 2/6 b) 8/3 - 5/7 c) 13,45 + 0,3 d) 46,89 - 34,9

    Ver Resposta

    a)

    b)

    O Igualando os denominadores

    c) 13,45 + 0,3 = 13,75

    d) 46,89 - 34,9 =

    Questão 9

    Efetue as multiplicações dos números racionais.

    a) 15/4 x 6/2 b) 8/7 x 9/5 c) 12,3 x 2,3 d) 3,02 x 6,2

    Ver Resposta

    a)

    b)

    c) 12,3 x 2,3 = 28,29

    d) 3,02 x 6,2 = 18,724

    Questão 10

    Efetue as divisões dos números racionais.

    a)

    b)

    c)

    d)

    Ver Resposta

    a)

    b)

    c)

    d)

    Questão 11

    Efetue as potenciações dos números racionais.

    a) b) c) d)

    Ver Resposta

    a)

    b)

    c)

    d)

    Questões do Enem sobre números racionais

    Questão 12

    (Enem 2018) O artigo 33 da lei brasileira sobre drogas prevê a pena de reclusão de 5 a 15 anos para qualquer pessoa que seja condenada por tráfico ilícito ou produção não autorizada de drogas. Entretanto, caso o condenado seja réu primário, com bons antecedentes criminais, essa pena pode sofrer uma redução de um sexto a dois terços.

    Suponha que um réu primário, com bons antecedentes criminais, foi condenado pelo artigo 33 da lei brasileira sobre drogas.

    Após o benefício da redução de pena, sua pena poderá variar de

    a) 1 ano e 8 meses a 12 anos e 6 meses. b) 1 ano e 8 meses a 5 anos. c) 3 anos e 4 meses a 10 anos. d) 4 anos e 2 meses a 5 anos. e) 4 anos e 2 meses a 12 anos e 6 meses.

    Ver Resposta

    Resposta correta: a) 1 ano e 8 meses a 12 anos e 6 meses.

    Devemos descobrir o menor e o maior tempo de reclusão. Como nas opções aparecem contagens em meses, passamos o tempo da pena descrita no artigo para meses, para facilitar o cálculo.

    5 anos = 5 . 12 meses = 60 meses 15 anos = 15 . 12 meses = 180 meses

    Maior redução possível no menor tempo de reclusão.

    A maior redução é de 2/3 de 60 meses.

    Aplicando uma redução de 40 meses em uma pena de 60 meses, sobram 20 meses.

    60 - 40 = 20 meses

    20 meses é igual a 12 + 8, ou seja, 1 ano e oito meses.

    Menor redução possível no maior tempo de reclusão.

    A menor redução é de 1/6 de 180 meses.

    Aplicando uma redução de 30 meses em uma pena de 180 meses, restam 150 meses.

    180 - 30 = 150 meses

    150 meses é igual a 12 anos e seis meses.

    Questão 13

    (Enem 2021) Foi feita uma pesquisa sobre a escolaridade dos funcionários de uma empresa. Verificou-se que 1/4 dos homens que ali trabalham têm o ensino médio completo, enquanto 2/3 das mulheres que trabalham na empresa têm o ensino médio completo. Constatou-se, também, que entre todos os que têm o ensino médio completo, metade são homens.

    A fração que representa o número de funcionários homens em relação ao total de funcionários dessa empresa é

    a) 1/8 b) 3/11 c) 11/24 d) 2/3 e) 8/11

    Ver Resposta

    Resposta correta: e) 8/11

    Sendo h o número total de homens e m o número total de mulheres, o total de funcionários é h + m. O problema quer o número de homens dividido pelo número total.

    A metade dos que tem ensino médio são homens, portanto, a outra metade são mulheres, então, uma quantidade é igual a outra.

    • 2/3 das mulheres tem ensino médio
    • 1/4 dos homens tem ensino médio

    Isolando m

    Substituindo em m este valor na equação 1, temos

    Portanto, a fração que representa o número de funcionários homens em relação ao total de funcionários dessa empresa é .

    Questão 14

    (Enem 2017) Para uma temporada das corridas de Fórmula 1, a capacidade do tanque de combustível de cada carro passou a ser de 100 kg de gasolina. Uma equipe optou por utilizar uma gasolina com densidade de 750 gramas por litro, iniciando a corrida com o tanque cheio. Na primeira parada de reabastecimento, um carro dessa equipe apresentou um registro em seu computador de bordo acusando o consumo de quatro décimos da gasolina originalmente existente no tanque. Para minimizar o peso desse carro e garantir o término da corrida, a equipe de apoio reabasteceu o carro com a terça parte do que restou no tanque na chegada ao reabastecimento.

    Disponível em: www.superdanilof1page.com.br. Acesso em: 6 jul. 2015 (adaptado).

    A quantidade de gasolina utilizada, em litro, no reabastecimento foi

    a)

    b)

    c)

    d) 20 x 0,075

    e) 20 x 0,75

    Ver Resposta

    Resposta correta: b)

    A quantidade total de combustível no tanque é 100 kg ou 100 000 g.

    Cada 750 g correspondem a 1 litro. Desta forma, a quantidade total de litros no tanque é:

    Foram consumidos 4/10 de combustível até a parada, isso quer dizer que sobraram 6/10 de 100 000 / 750.

    No reabastecimento, foi colocada 1/3 da quantidade que sobrou. Desta forma temos:

    Combustível que sobrou

    Quantidade reabastecida

    Ao reorganizar as frações, chegamos mais facilmente ou resultado, deste modo:

    Você pode se interessar por:

    • Números Racionais
    • Operações com números decimais
    • Conjuntos Numéricos
    • Frações
    • Multiplicação e Divisão de Frações
    window.UBA_API_URL = "https://api.7gra.us/user-behaviour/v1/"; window.PROJECT_ID = 48; window.DOMAIN = "todamateria.com.br"; window.CONTENT_URL = "exercicios-sobre-numeros-racionais"; window.onload = function() { new Feedback({ environment: "production", project_id: "48", project_name: "todamateria.com.br", author_id: "227", author_name: "Rafael Asth", content_type: "article", content_id: "5005", content_url: "exercicios-sobre-numeros-racionais", content_title: "Exercícios sobre Números Racionais" }); } Escrito por Rafael Asth Se graduou em Engenharia Mecânica pela Universidade Estadual do Rio de Janeiro e Licenciatura em Matemática pela Universidade Cruzeiro do Sul. É pós-graduado em Ensino da Matemática e Física pela Universidade Cândido Mendes.

    Smile Life

    Show life that you have a thousand reasons to smile

    Get in touch

    © Copyright 2021 ELIB.TIPS - All rights reserved.