Área do Triângulo

A área do triângulo pode ser calculada através das medidas da base e da altura da figura. Lembre-se que o triângulo é uma figura geométrica plana formada por três lados.

Contudo, há diversas maneiras de calcular a área de um triângulo, sendo que a escolha é feita de acordo com os dados conhecidos no problema.

Acontece que muitas vezes, não temos todas as medidas necessárias para fazer esse cálculo.

Nestes casos, devemos identificar o tipo de triângulo (retângulo, equilátero, isósceles ou escaleno) e levar em consideração as suas características e propriedades para encontrar as medidas que necessitamos.

Como calcular a área de um triângulo?

Na maioria das situações, usamos as medidas da base e da altura de um triângulo para calcular a sua área. Considere o triângulo representado abaixo, sua área será calculada, usando a seguinte fórmula:

Sendo,

Área: área do triângulob: baseh:altura

Área do Triângulo Retângulo

O triângulo retângulo possui um ângulo reto (90º), e dois ângulos agudos (menores que 90º). Desta maneira, das três alturas de um triângulo retângulo, duas coincidem com os lados desse triângulo.

Além disso, se conhecermos dois lados de um triângulo retângulo, usando o teorema de Pitágoras, facilmente encontramos o terceiro lado.

VEJA TAMBÉM: Trigonometria no Triângulo Retângulo

Área do Triângulo Equilátero

O triângulo equilátero, também chamado de equiângulo, é um tipo de triângulo que possui todos os lados e ângulos internos congruentes (mesma medida).

Neste tipo de triângulo, quando conhecemos apenas a medida do lado, podemos usar o teorema de Pitágoras para encontrar a medida da altura.

A altura, neste caso, o divide em outros dois triângulos congruentes. Considerando um desses triângulos e que seus lados são L, h (altura) e L/2 (o lado relativo a altura fica dividido ao meio), ficamos com:

Assim, substituindo o valor encontrado para a altura na fórmula da área, temos:

Área do Triângulo Isósceles

O triângulo isósceles é um tipo de triângulo que possui dois lados e dois ângulos internos congruentes. Para calcular a área do triângulo isósceles, utiliza-se a fórmula básica para um triângulo qualquer.

Quando queremos calcular a área de um triângulo isósceles e não conhecemos a medida da altura, também podemos usar o teorema de Pitágoras para encontrar essa medida.

No triângulo isósceles, a altura relativa a base (lado com medida diferente dos outros dois lados) divide este lado em dois segmentos congruentes (mesma medida).

Desta forma, conhecendo as medidas dos lados de um triângulo isósceles, podemos encontrar sua área.

Exemplo

Calcule a área do triângulo isósceles representado na figura abaixo:

Solução

Para calcular a área do triângulo usando a fórmula básica, precisamos conhecer a medida da altura. Considerando a base como o lado de diferente medida, iremos calcular a altura relativa a esse lado.

Lembrando que a altura, neste caso, divide o lado em duas partes iguais, usaremos o teorema de Pitágoras para calcular sua medida.

Área do Triângulo Escaleno

O triângulo escaleno é um tipo de triângulo que possui todos os lados e ângulos internos diferentes. Sendo assim, uma forma de encontrar a área desse tipo de triângulo é usar a trigonometria.

Se conhecermos dois lados desse triângulo e o ângulo entre esses dois lados, sua área será dada por:

Pela Fórmula de Heron também podemos calcular a área do triângulo escaleno.

VEJA TAMBÉM: Classificação dos Triângulos

Outras fórmulas para calcular a área do triângulo

Além da encontrar a área através do produto da base pela altura e dividir por 2, podemos também utilizar outros processos.

Fórmula de Heron

Outra maneira de calcular a área do triângulo é pela "Fórmula de Heron", também chamada de "Teorema de Herão". Ela utiliza os semiperímetros (metade do perímetro) e os lados do triângulo.

Onde,

S: área do triângulop: semiperímetroa, b e c: lados do triângulo Sendo o perímetro do triângulo a soma de todos os lados da figura, o semiperímetro representa a metade do perímetro:

Interessante notar que, nesta fórmula não há a necessidade de se conhecer a medida da altura (h), por isso, quando essa informação não é dada, o "Teorema de Heron" facilita encontrar a área do triângulo.

VEJA TAMBÉM: Perímetro do Triângulo

Fórmula do Raio Circunscrito

Baseada na "Lei dos Senos" tem-se a "Fórmula do Raio Circunscrito" representada pela expressão:

A: área do triânguloa, b e c: lados do triângulor: raio da circunferência circunscrita

Ela é utilizada quando o triângulo está inscrito numa circunferência.

VEJA TAMBÉM: Semelhança de Triângulos

Exercícios de Vestibular com Gabarito

1. Enem - 2010

Em canteiros de obras de construção civil, é comum perceber trabalhadores realizando medidas de comprimento e de ângulos e fazendo demarcações por onde a obra deve começar ou se erguer.

Em um desses canteiros foram feitas algumas marcas no chão plano. Foi possível perceber que, das seis estacas colocadas, três eram vértices de um triângulo retângulo e as outras três eram os pontos médios dos lados desse triângulo conforme pode ser visto na figura, em que as estacas foram indicadas por letras.

A região demarcada pelas estacas A, B, M e N deveria ser calçada com concreto. Nessas condições, a área a ser calçada corresponde

a) à mesma área do triângulo AMC. b) à mesma área do triângulo BNC. c) à metade da área formada pelo triângulo ABC. d) ao dobro da área do triângulo MNC. e) ao triplo da área do triângulo MNC.

Alternativa e: ao triplo da área do triângulo MNC.

Ver Resposta

2. Cefet/RJ - 2014

Se ABC é um triângulo tal que AB = 3 cm e BC = 4cm, podemos afirmar que a sua área, em cm2, é um número:

a) no máximo igual a 9 b) no máximo igual a 8 c) no máximo igual a 7 d) no máximo igual a 6

Alternativa d: no máximo igual a 6

Ver Resposta

3. PUC/RIO - 2007

A hipotenusa de um triângulo retângulo mede 10 cm e o perímetro mede 22 cm. A área do triângulo (em cm2) é:

a) 50 b) 4 c) 11 d) 15 e) 7

Alternativa c: 11

Ver Resposta

Para saber mais, leia também:

  • Área do Quadrado
  • Áreas de Figuras Planas
  • Área de Figuras Planas - Exercícios
  • Área do Retângulo
  • Área e Perímetro
  • Teorema de Pitágoras - Exercícios
  • Geometria Plana
  • Retângulo
  • Prisma
  • Fórmulas de Matemática
Rosimar GouveiaBacharelada em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF)em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.
More Questions From This User See All

Recommend Questions


Transformações geométricas: translação, rotação e reflexão
Estas transformações nos permitem criar novas figuras a partir das originais ou alterar sua posiç&a

Plano de aula: retas paralelas cortadas por transversais (9º ano)
Ângulos formados por retas paralelas e transversais

Plano de aula de Matemática: área de triângulos e retângulos (7º ano)
Equivalência de área de figuras planas: cálculo de áreas de figuras que podem ser decompostas

Pontos notáveis de um triângulo: quais são e como localizar
Estes pontos, conhecidos por pontos notáveis, são determinados pelo cruzamento de um conjunto de linhas, c

Condição de existência de um triângulo (com exemplos)
Um triângulo é uma figura formada por três segmentos de reta, plana e, sobretudo, fechada. No entanto

Diagonais de um polígono: o que são e como calcular
Assim, para traçar uma diagonal, é preciso começar em um vértice e seguir com o traço

Exercícios sobre triângulos explicados
Analise a figura a seguir formada por triângulos e determine a medida do segmento ED, paralelo a AB, sabendo que:

Polígonos convexos: o que são e como reconhecer um
Polígonos convexos: o que são e como reconhecer um window.sg_perf && performance.mark('img:visible'); Rafael C. Asth Pro

O que é um quadrado? Definição, fórmulas e exercícios
Todo quadrado possui quatro arestas (lados), quatro vértices (pontos de encontro dos lados) e quatro ângulo

Triângulo: tudo sobre este polígono
Esta figura é largamente utilizada com diversas aplicações. Na engenharia, por ser um elemento r&ia

Smile Life

Show life that you have a thousand reasons to smile

Get in touch

© Copyright 2025 ELIB.TIPS - All rights reserved.