Equações da Reta

Equação fundamental da reta

Podemos representar uma reta r do plano cartesiano por meio de uma equação. Essa equação pode ser obtida a partir de um ponto A(xA, yA) e do coeficiente angular m dessa reta.

Considere uma reta r não-vertical, de coeficiente angular m, que passa pelo ponto A(xA, yA). Vamos obter a equação dessa reta, tomando um ponto P(x, y) tal que P ≠ A.

A equação fundamental da reta é:

m = \frac{y-y_A}{x-x_A}\rightarrow y - y_A = m(x-x_A)

Equação geral da reta

Toda reta r do plano cartesiano pode ser expressa por uma equação do tipo:

ax + by + c = 0

Em que: • a, b, e c são números reais; • a e b não são simultaneamente nulos.

Podemos obter a equação geral de uma reta r conhecendo dois pontos não coincidentes de r:

A(x_a, y_a)\text{ e }B(x_b, y_b)

Para isso, usa-se a condição de alinhamento de A e B com um ponto genérico P(x,y) de r.

Equação reduzida da reta

Vamos determinar a equação da reta r que passa por Q(0,q), e tem coeficiente angular m = tg(α):

y - q = m(x-0)

y - q = mx

y = mx + q

Toda equação na forma y = mx + q é chamada equação reduzida da reta, em que m é o coeficiente angular e q a ordenada do ponto n qual a reta cruza o eixo Oy. A equação reduzida pode ser obtida diretamente da equação geral ax + by + c = 0:

ax + by + c = 0\rightarrow by = -ax -c

Onde:

y = \frac{-a}{b}x - \frac{c}{b}

x = \frac{-a}{b}

q = -\frac{c}{b}

Equação segmentária da reta

Considere uma reta r que cruza os eixos cartesianos nos pontos (0, q) e (p, 0).

Vamos escrever a equação da reta r:

Dividindo essa equação por pq, obtemos a equação segmentária da reta:

\frac{x}{p} + \frac{y}{q} = 1

Leia também:

  • Posicões relativas de duas retas
  • More Questions From This User See All

    Recommend Questions


    Transformações geométricas: translação, rotação e reflexão
    Estas transformações nos permitem criar novas figuras a partir das originais ou alterar sua posiç&a

    Plano de aula: retas paralelas cortadas por transversais (9º ano)
    Ângulos formados por retas paralelas e transversais

    Plano de aula de Matemática: área de triângulos e retângulos (7º ano)
    Equivalência de área de figuras planas: cálculo de áreas de figuras que podem ser decompostas

    Pontos notáveis de um triângulo: quais são e como localizar
    Estes pontos, conhecidos por pontos notáveis, são determinados pelo cruzamento de um conjunto de linhas, c

    Condição de existência de um triângulo (com exemplos)
    Um triângulo é uma figura formada por três segmentos de reta, plana e, sobretudo, fechada. No entanto

    Diagonais de um polígono: o que são e como calcular
    Assim, para traçar uma diagonal, é preciso começar em um vértice e seguir com o traço

    Exercícios sobre triângulos explicados
    Analise a figura a seguir formada por triângulos e determine a medida do segmento ED, paralelo a AB, sabendo que:

    Polígonos convexos: o que são e como reconhecer um
    Polígonos convexos: o que são e como reconhecer um window.sg_perf && performance.mark('img:visible'); Rafael C. Asth Pro

    O que é um quadrado? Definição, fórmulas e exercícios
    Todo quadrado possui quatro arestas (lados), quatro vértices (pontos de encontro dos lados) e quatro ângulo

    Triângulo: tudo sobre este polígono
    Esta figura é largamente utilizada com diversas aplicações. Na engenharia, por ser um elemento r&ia

    Smile Life

    Show life that you have a thousand reasons to smile

    Get in touch

    © Copyright 2024 ELIB.TIPS - All rights reserved.