As funções polinomiais são definidas por expressões polinomiais. Elas são representadas pela expressão:
f(x) = an . xn + an – 1 . xn – 1 + ...+a2 . x2 + a1 . x + a0
onde,
n: número inteiro positivo ou nulo x: variável a0, a1, ....an – 1, an: coeficientes an . xn, an – 1 . xn – 1, ... a1 . x , a0: termos
Cada função polinomial associa-se a um único polinômio, sendo assim chamamos as funções polinomiais também de polinômios.
Para encontrar o valor numérico de um polinômio, substituímos um valor numérico na variável x.
Exemplo
Qual o valor numérico de p(x) = 2x3 + x2 - 5x - 4 para x = 3?
Substituindo o valor na variável x temos:
2 . 33 + 32 - 5 . 3 - 4 = 54 + 9 - 15 - 4 = 44
Dependendo do expoente mais elevado que apresentam em relação à variável, os polinômios são classificados em:
Obs: o polinômio nulo é aquele que possui todos os coeficientes iguais a zero. Quando isso ocorre, o grau do polinômio não é definido.
Podemos associar um gráfico a uma função polinomial, atribuindo valores a x na expressão p(x).
Desta forma, encontraremos os pares ordenados (x,y), que serão pontos pertencentes ao gráfico.
Ligando esses pontos teremos o esboço do gráfico da função polinomial.
Veja alguns exemplos de gráficos:
Dois polinômios são iguais se os coeficientes dos termos de mesmo grau são todos iguais.
Exemplo
Determine o valor de a, b, c e d para que os polinômios p(x) = ax4 + 7x3 + (b + 10)x2 - c e h(x) = (d + 4)x3 + 3bx2 + 8.
Para os polinômios serem iguais é necessário que os coeficientes correspondentes sejam iguais.
Então,
a = 0 (o polinômio h(x) não tem o termo x4, sendo assim seu valor é igual a zero) b + 10 = 3b → 2b = 10 → b = 5 - c = 8 → c = - 8 d + 4 = 7 → d = 7 - 4 → d = 3
Confira abaixo exemplos das operações entre polinômios:
(- 7x3 + 5x2 - x + 4) + (- 2x2 + 8x -7) - 7x3 + 5x2 - 2x2 - x + 8x + 4 - 7 - 7x3 + 3x2 + 7x -3
(4x2 - 5x + 6) - (3x - 8) 4x2 - 5x + 6 - 3x + 8 4x2 - 8x + 14
(3x2 - 5x + 8) . (- 2x + 1) - 6x3 + 3x2 + 10x2 - 5x - 16x + 8 - 6x3 + 13x2 - 21x + 8
Obs: Na divisão de polinômios utilizamos o método chave. Primeiramente realizamos a divisão entre os coeficientes numéricos e depois a divisão de potências de mesma base. Para isso, conserva-se a base e subtraia os expoentes.
A divisão é formada por: dividendo, divisor, quociente e resto.
divisor . quociente + resto = dividendo
Teorema do RestoO Teorema do Resto representa o resto na divisão dos polinômios e possui o seguinte enunciado:
O resto da divisão de um polinômio f(x) por x - a é igual a f(a).
Leia também:
1. (FEI - SP) O resto da divisão do polinômio p (x) = x5 + x4 - x3 + x + 2 pelo polinômio q (x) = x - 1 é:
a) 4 b) 3 c) 2 d) 1 e) 0
Alternativa a: 4
Ver Resposta2. (Vunesp-SP) Se a, b, c são números reais tais que ax2 + b (x + 1)2 + c (x+2)2 = (x + 3)2 para todo x real, então o valor de a - b + c é:
a) - 5 b) - 1 c) 1 d) 3 e) 7
Alternativa e: 7
Ver Resposta3. (UF-GO) Considere o polinômio: p(x) = (x - 1) (x - 3)2 (x - 5)3 (x - 7)4 (x - 9)5 (x - 11)6. O grau de p(x) é igual a:
a) 6 b) 21 c) 36 d) 720 e) 1080
Alternativa b: 21
Ver Resposta4. (Cefet-MG) O polinômio P(x) é divisível por x - 3. Dividindo-se P(x) por x - 1, obtém-se o quociente Q(x) e resto 10. Nessas condições, o resto da divisão de Q(x) por x - 3 vale:
a) - 5 b) - 3 c) 0 d) 3 e) 5
Alternativa a: - 5
Ver Resposta5. (UF-PB) Na inauguração da praça, foram realizadas várias atividades recreativas e culturais. Dentre elas, no anfiteatro, um professor de Matemática proferiu uma palestra para vários alunos do ensino médio e propôs o seguinte problema: Encontrar valores para a e b, de modo que o polinômio p(x) = ax3 + x2 + bx + 4 seja divisível por q(x) = x2 - x - 2. Alguns alunos resolveram corretamente esse problema e, além disso, constataram que a e b satisfazem a relação:
a) a2 + b2 = 73 b) a2 - b2 = 33 c) a + b = 6 d) a2 + b = 15 e) a - b= 12
Alternativa a: a2 + b2 = 73
Ver Resposta Rosimar GouveiaBacharelada em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF)em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.Show life that you have a thousand reasons to smile
© Copyright 2024 ELIB.TIPS - All rights reserved.