As funções trigonométricas, também chamadas de funções circulares, estão relacionadas com as demais voltas no ciclo trigonométrico.
As principais funções trigonométricas são:
No círculo trigonométrico temos que cada número real está associado a um ponto da circunferência.
Figura do Círculo Trigonométrico dos ângulos expressos em graus e radianos
As funções periódicas são funções que possuem um comportamento periódico. Ou seja, que ocorrem em determinados intervalos de tempo.
O período corresponde ao menor intervalo de tempo em que acontece a repetição de determinado fenômeno.
Uma função f: A → B é periódica se existir um número real positivo p tal que
f(x) = f (x+p), ∀ x ∈ A
O menor valor positivo de p é chamado de período de f.
Note que as funções trigonométricas são exemplos de funções periódicas visto que apresentam certos fenômenos periódicos.
A função seno é uma função periódica e seu período é 2π. Ela é expressa por:
função f(x) = sen x
No círculo trigonométrico, o sinal da função seno é positivo quando x pertence ao primeiro e segundo quadrantes. Já no terceiro e quarto quadrantes, o sinal é negativo.
Além disso, no primeiro e quarto quadrantes a função f é crescente. Já no segundo e terceiro quadrantes a função f é decrescente.
O domínio e o contradomínio da função seno são iguais a R. Ou seja, ela está definida para todos os valores reais: Dom(sen)=R.
Já o conjunto da imagem da função seno corresponde ao intervalo real [-1, 1]: -1 sen x 1.
Em relação à simetria, a função seno é uma função ímpar: sen(-x) = -sen(x).
O gráfico da função seno f(x) = sen x é uma curva chamada de senoide:
Gráfico da função seno
Leia também: Lei dos Senos.
A função cosseno é uma função periódica e seu período é 2π. Ela é expressa por:
função f(x) = cos x
No círculo trigonométrico, o sinal da função cosseno é positivo quando x pertence ao primeiro e quarto quadrantes. Já no segundo e terceiro quadrantes, o sinal é negativo.
Além disso, no primeiro e segundo quadrantes a função f é decrescente. Já no terceiro e quarto quadrantes a função f é crescente.
O domínio e o contradomínio da função cosseno são iguais a R. Ou seja, ela está definida para todos os valores reais: Dom(cos)=R.
Já o conjunto da imagem da função cosseno corresponde ao intervalo real [-1, 1]: -1 cos x 1.
Em relação à simetria, a função cosseno é uma função par: cos(-x) = cos(x).
O gráfico da função cosseno f(x) = cos x é uma curva chamada de cossenoide:
Gráfico da função cosseno
Leia também: Lei dos Cossenos.
A função tangente é uma função periódica e seu período é π. Ela é expressa por:
função f(x) = tg x
No círculo trigonométrico, o sinal da função tangente é positivo quando x pertence ao primeiro e terceiro quadrantes. Já no segundo e quarto quadrantes, o sinal é negativo.
Além disso, a função f definida por f(x) = tg x é sempre crescente em todos os quadrantes do círculo trigonométrico.
O domínio da função tangente é: Dom(tan)={x ∈ R│x ≠ de π/2 + kπ; K ∈ Z}. Assim, não definimos tg x, se x = π/2 + kπ.
Já o conjunto da imagem da função tangente corresponde a R, ou seja, o conjunto dos números reais.
Em relação à simetria, a função tangente é uma função ímpar: tg(-x) = -tg(-x).
O gráfico da função tangente f(x) = tg x é uma curva chamada de tangentoide:
Gráfico da função tangente
Leia mais sobre o tema:
1. (UFAM) O menor valor não negativo côngruo ao arco de 21 π/5 rad é igual a:
a) π/5 rad b) 7 π/5 rad c) π rad d) 9 π/5 rad e) 2 π rad
Alternativa a) π/5 rad
Ver Resposta2. (Cefet-PR) A função real f(x) = a + b . sen cx tem imagem igual a [-7, 9] e seu período é π/2 rad. Assim, a + b + c vale:
a) 13 b) 9 c) 8 d) – 4 e) 10
Alternativa a) 13
Ver Resposta3. (UFPI) O período da função f(x) = 5 + sen (3x – 2) é:
a) 3π b) 2π/3 c) 3π – 2 d) π/3 – 2 e) π/5
Alternativa b) 2π/3
Ver Resposta Rosimar GouveiaBacharelada em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF)em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.Show life that you have a thousand reasons to smile
© Copyright 2024 ELIB.TIPS - All rights reserved.