Prisma - Figura Geométrica

O prisma é um sólido geométrico que faz parte dos estudos de geometria espacial.

É caracterizado por ser um poliedro convexo com duas bases (polígonos iguais) congruentes e paralelas, além das faces planas laterais (paralelogramos).

Composição do Prisma

Ilustração de um prisma e seus elementos

Os elementos que compõem o prisma são: base, altura, arestas, vértices e faces laterais.

Assim, as arestas das bases do prisma são os lados das bases do polígono, enquanto que as arestas laterais correspondem aos lados das faces que não pertencem às bases.

Os vértices do prisma são os pontos de encontro das arestas e a altura é calculada pela distância entre os planos das bases.

Entenda mais sobre:

  • Formas Geométricas
  • Poliedro
  • Paralelogramo

Classificação dos Prismas

Os primas são classificados em Retos e Oblíquos:

  • Prisma Reto: possui arestas laterais perpendiculares à base, cujas faces laterais são retângulos.
  • Prisma Oblíquo: possui arestas laterais oblíquas à base, cujas faces laterais são paralelogramos.

Prisma reto (A) e prisma oblíquo (B)

Bases do Prisma

De acordo com o formato das bases, os primas são classificados em:

  • Prisma Triangular: base formada por triângulo.
  • Prisma Quadrangular: base formada por quadrado.
  • Prisma Pentagonal: base formada por pentágono.
  • Prisma Hexagonal: base formada por hexágono.
  • Prisma Heptagonal: base formada por heptágono.
  • Prisma Octogonal: base formada por octógono.

Figuras de prisma segundo suas bases

Importante ressaltar que os chamados “prismas regulares” são aqueles cujas bases são polígonos regulares e, portanto, formados por prismas retos.

Note que se todas as faces do prisma forem quadrados, trata-se de um cubo; e, se todas as faces são paralelogramos, o prisma é um paralelepípedo.

Saiba mais sobre a Geometria Espacial.

Fique Atento!

Para calcular a área da base (Ab) de um prisma deve-se levar em conta o formato que apresenta. Por exemplo, se for um prisma triangular a área da base será um triângulo.

Saiba mais nos artigos:

  • Área do Triângulo
  • Área do Losango

Fórmulas do Prisma

Áreas do Prisma

Área Lateral: para calcular a área lateral do prisma, basta somar as áreas das faces laterais. Num prisma reto, que possui todas as áreas das faces laterais congruentes, a fórmula da área lateral é:

Al = n . a

n: número de ladosa: face lateral

Área Total: para calcular a área total de um prisma, basta somar as áreas das faces laterais e as áreas das bases:

At = Sl+ 2Sb

Sl: Soma das áreas das faces lateraisSb: soma das áreas das bases

Volume do Prisma

O volume do prisma é calculado pela seguinte fórmula:

V = Ab.h

Ab: área da baseh: altura

VEJA TAMBÉM: Fórmulas de Matemática

Exercícios Resolvidos

1) Indique se as sentenças abaixo são verdadeiras (V) ou falsas (F):

a) O prisma é uma figura da geometria plana b) Todo paralelepípedo é um prisma reto c) As arestas laterais de um prisma são congruentes d) As duas bases de um prisma são polígonos semelhantes e) As faces laterais de um prisma oblíquo são paralelogramos

a) (F) b) (F) c) (V) d) (V) e) (V)

Ver Resposta

2) O número de faces laterais, arestas e vértices de um prisma oblíquo quadrangular é:

a) 6; 8; 12 b) 2; 8; 4 c) 2; 4; 8 d) 4; 10; 8 e) 4; 12; 8

Letra e: 4; 12; 8

Ver Resposta

3) O número de faces laterais, arestas e vértices de um prisma reto heptagonal é:

a) 7; 21; 14 b) 7; 12; 14 c) 14; 21; 7 d) 14; 7; 12 e) 21; 12; 7

Letra a: 7; 21; 14

Ver Resposta

4) Calcule a área da base, a área lateral e a área total de um prisma reto que apresenta 20 cm de altura, cuja base é um triângulo retângulo com catetos que medem 8 cm e 15 cm.

Antes de mais nada, para descobrirmos a área da base, devemos lembrar a fórmula para encontrar a área do triângulo

Logo,

Ab= 8.15/2 Ab=60 cm2

Por conseguinte, para encontrar a área lateral e a área da base devemos lembrar do Teorema de Pitágoras, donde a soma dos quadrados de seus catetos corresponde ao quadrado de sua hipotenusa.

Ele é representado pela fórmula: a2=b2+c2. Assim, por meio da fórmula devemos encontrar a medida da hipotenusa da base:

Logo,

a2=82+152 a2=64+225 a2= 289 a=√289 a2=17 cm

Área Lateral (soma das áreas dos três triângulos que formam o prisma)

Al= 8.20+15.20+17.20 Al= 160+300+340 Al=800 cm2

Área Total (soma da área lateral com o dobro da área da base)

At=800+2.60 At=800+120 At=920 cm2

Assim, as respostas do exercício são:

Área da Base: Ab=60 cm2 Área Lateral: Al=800 cm2 Área Total: At=920 cm2

Ver Resposta

5) (Enem-2012)

Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes formatos. Nas imagens apresentadas estão as planificações dessas caixas.

Quais serão os sólidos geométricos que Maria obterá a partir dessas planificações?

a) Cilindro, prisma de base pentagonal e pirâmide b) Cone, prisma de base pentagonal e pirâmide c) Cone, tronco de pirâmide e prisma d) Cilindro, tronco de pirâmide e prisma e) Cilindro, prisma e tronco de cone

Letra a: Cilindro, prisma de base pentagonal e pirâmide

Ver Resposta Rosimar GouveiaBacharelada em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF)em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.
More Questions From This User See All

Recommend Questions


Transformações geométricas: translação, rotação e reflexão
Estas transformações nos permitem criar novas figuras a partir das originais ou alterar sua posiç&a

Plano de aula: retas paralelas cortadas por transversais (9º ano)
Ângulos formados por retas paralelas e transversais

Plano de aula de Matemática: área de triângulos e retângulos (7º ano)
Equivalência de área de figuras planas: cálculo de áreas de figuras que podem ser decompostas

Pontos notáveis de um triângulo: quais são e como localizar
Estes pontos, conhecidos por pontos notáveis, são determinados pelo cruzamento de um conjunto de linhas, c

Condição de existência de um triângulo (com exemplos)
Um triângulo é uma figura formada por três segmentos de reta, plana e, sobretudo, fechada. No entanto

Diagonais de um polígono: o que são e como calcular
Assim, para traçar uma diagonal, é preciso começar em um vértice e seguir com o traço

Exercícios sobre triângulos explicados
Analise a figura a seguir formada por triângulos e determine a medida do segmento ED, paralelo a AB, sabendo que:

Polígonos convexos: o que são e como reconhecer um
Polígonos convexos: o que são e como reconhecer um window.sg_perf && performance.mark('img:visible'); Rafael C. Asth Pro

O que é um quadrado? Definição, fórmulas e exercícios
Todo quadrado possui quatro arestas (lados), quatro vértices (pontos de encontro dos lados) e quatro ângulo

Triângulo: tudo sobre este polígono
Esta figura é largamente utilizada com diversas aplicações. Na engenharia, por ser um elemento r&ia

Smile Life

Show life that you have a thousand reasons to smile

Get in touch

© Copyright 2024 ELIB.TIPS - All rights reserved.