Triângulo Isósceles

Triângulo isósceles é um polígono que apresenta três lados, sendo dois deles congruentes (mesma medida).

O lado com medida diferente é chamado de base do triângulo isósceles. O ângulo formado pelos dois lados congruentes é chamado de ângulo do vértice.

No triângulo isósceles ABC, representado abaixo, os lados possuem mesma medida. O lado é a base do triângulo. O ponto A é o vértice, enquanto o ângulo é o ângulo do vértice.

Propriedades dos Triângulos Isósceles

Todo triângulo isósceles apresenta as seguintes propriedades:

  • Os ângulos das bases são congruentes;
  • A bissetriz do ângulo do vértice coincide com a altura relativa à base e com a mediana.

Para provar essas propriedades, iremos utilizar um triângulo isósceles ABC. Traçando a bissetriz do ângulo do vértice, formamos os triângulos ABM e ACM, conforme figura abaixo:

Note que o lado é comum aos dois triângulos e a bissetriz dividiu o ângulo em dois ângulos de mesma medida. Além disso, os lados são congruentes (lados iguais do triângulo isósceles ABC).

Desta forma, temos o caso de congruência de triângulos LAL (lado, ângulo, lado). Concluímos então que os ângulos , da base do triângulo, possuem a mesma medida.

Podemos ainda concluir que, como os triângulos ABM e ACM são congruentes, as medidas de são iguais.

Portanto, também é a mediana relativa à base. Além disso, também é a altura relativa à base, pois forma com a base dois ângulos iguais a 90º.

Área dos Triângulos

Para encontrar a área de um triângulo isósceles usamos a fórmula da área de uma triângulo qualquer:

Onde:

A: área b: medida da base h: medida da altura relativa à base

Exemplo:

Qual o valor da área de um triângulo isósceles que apresenta lados com medidas iguais a 10 cm, 10 cm e 12 cm?

A base do triângulo mede 12 cm, contudo, não temos a medida da altura. Entretanto, sabemos que ela coincide com a mediana. Desta forma a altura irá dividir a base em dois segmentos iguais, ou seja 12:2 = 6.

Para encontrar a altura iremos usar o teorema de Pitágoras:

102 = 62 + h2 h2 = 100 - 36 h2 = 64 h = 8 cm

Agora, podemos calcular a área:

VEJA TAMBÉM: Teorema de Pitágoras - Exercícios

Eixo de Simetria

O eixo de simetria de uma figura é uma reta que a divide em duas outras figuras idênticas e que quando dobramos pelo eixo de simetria, essas figuras se sobrepõem perfeitamente.

Os triângulos isósceles apresentam apenas 1 eixo de simetria, que é a reta que divide o ângulo do vértice em dois ângulos iguais (bissetriz).

Classificação dos Triângulos

Além dos triângulos isósceles, temos ainda os triângulos equiláteros e escalenos. Essa classificação leva em consideração os lados que formam o triângulo.

Assim, o triângulo equilátero é aquele que possui três lados com mesma medida e o escaleno todos os lados apresentam medidas diferentes.

Podemos ainda classificar os triângulos em relação aos ângulos internos. O triângulo será acutângulo quando a medida dos ângulos internos for menor que 90º.

Quando o triângulo apresentar um ângulo reto (igual a 90º) será classificado como triângulo retângulo e obtusângulo quanto tiver um ângulo maior que 90º.

Para estudar mais sobre esse conteúdo, leia também:

  • Exercícios de Trigonometria
  • Classificação dos Triângulos
  • Semelhança de Triângulos
  • Área do Triângulo
  • Perímetro do Triângulo
Rosimar GouveiaBacharelada em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF)em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.
More Questions From This User See All

Recommend Questions


Transformações geométricas: translação, rotação e reflexão
Estas transformações nos permitem criar novas figuras a partir das originais ou alterar sua posiç&a

Plano de aula: retas paralelas cortadas por transversais (9º ano)
Ângulos formados por retas paralelas e transversais

Plano de aula de Matemática: área de triângulos e retângulos (7º ano)
Equivalência de área de figuras planas: cálculo de áreas de figuras que podem ser decompostas

Pontos notáveis de um triângulo: quais são e como localizar
Estes pontos, conhecidos por pontos notáveis, são determinados pelo cruzamento de um conjunto de linhas, c

Condição de existência de um triângulo (com exemplos)
Um triângulo é uma figura formada por três segmentos de reta, plana e, sobretudo, fechada. No entanto

Diagonais de um polígono: o que são e como calcular
Assim, para traçar uma diagonal, é preciso começar em um vértice e seguir com o traço

Exercícios sobre triângulos explicados
Analise a figura a seguir formada por triângulos e determine a medida do segmento ED, paralelo a AB, sabendo que:

Polígonos convexos: o que são e como reconhecer um
Polígonos convexos: o que são e como reconhecer um window.sg_perf && performance.mark('img:visible'); Rafael C. Asth Pro

O que é um quadrado? Definição, fórmulas e exercícios
Todo quadrado possui quatro arestas (lados), quatro vértices (pontos de encontro dos lados) e quatro ângulo

Triângulo: tudo sobre este polígono
Esta figura é largamente utilizada com diversas aplicações. Na engenharia, por ser um elemento r&ia

Smile Life

Show life that you have a thousand reasons to smile

Get in touch

© Copyright 2024 ELIB.TIPS - All rights reserved.